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Abstract. We study global stability properties for differentiable optimization problems of the type: 

P( f, H, G): Min f(x) on M[H, G] = {x E R” 1 H(x) = 0, G(x) 2 0} . 

Two problems are called equivalent if each lower level set of one problem is mapped homeomorphi- 
tally onto a corresponding lzwer level set of the other one. In case that P( f, g, G) is equivalent with 
P( f, H, G) for all (7,6, G) in some neighbourhood of (f, H, G) we call SP( f, H, G) structurally 
stable; the topology used takes derivatives up to order two into account. Under the assumption that 
M[H, G] is compact we prove that structural stability of P( f, H, G) is equivalent with the validity of 
the following three conditions: 

C.1. The Mangasarian-Fromovitz constraint qualification is satisfied at every point of M[H, G]. 
C.2. Every Kuhn-Tucker point of P( f, H, G) is strongly stable in the sense of Kojima. 
C.3. Different Kuhn-Tucker points have different (f-)values. 
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1. Introduction, Main Result 

Let W denote the n-dimensional Euclidean space and Ck(llY, R) the space of real 
valued, k-times continuously differentiable functions on W. Moreover, we fix two 
finite index sets Z, .Z, with Z= {l, . . . , m}, .Z= {l, . . . ,s} and rn<n. In the 
sequel, the functions f, Zri, gj, i E Z, j E .Z, belong to C’(W, R), and ZZ, resp. G, 
stands for (Zzr, . . . , ZZ~)‘, resp. (gr, . . . , gS)? 

The optimization problem under consideration will be of the following standard 
type: 

P( f, H, G) : Minimize f on M[H, G] , (1.1) 

where the feasible set M[H, G] is defined as 

M[H, G] = {x E R” 1 hi(x) = 0, gj(x) 2 0, i E Z, j E .I} . tw 

The lower level set corresponding to the functional value t will be denoted as 
follows: 

cY?(f, H, G) := {x E M[H, G] 1 f(x) 5 t} . 0.3) 
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DEFINITION 1.1. The optimization problems ??( f, H, G) and 9(x fi, 6) are 
called ~L@V&YZ~ if there exist continuous mappings $ : llZ x LV+ 5Y and + : LF$-+ R 
with the properties Pl-P3: 

Pl. For every t E IlX the mapping +r: LQn -+ llY is a homeomorphism from R” 
onto itself, where $t(~) := $(t, x). 

P2. The mapping I,/J is a homeomorphism from ll?? onto itself and Q!I is monotoni- 
cally increasing. 

In [1] it is pointed out that the above concept defines an equivalence relation on 
the set of optimization problems of type 9(f, H, G). The above equivalence 
concept is very natural w.r. t. optimization since - globally - all descent flows in 
one problem are carried over into corresponding descent fiows in the other one. 
The fact that in Definition 1.1 an one parameter family & of homeomorphisms 
rather than one tied homemorphism is chosen is due to the possible shift of 
stationary points from the boundary into the interior of the feasible set under 
small perturbations of the problem data (cf. also [l]). 

DEFINITION 1.2. The optimization problem Y(f, H, G) is called structuruZly 
stuble if there exists a C$neighbourhood 0 of (f, HL G-) with the property that 
9J’(f, H, G) and 9’(x fi, 6) are equivalent for all (f, H, 6) E 0. 0 

The C$topology above for the product lli+ C’(lR’, R) will be the product- 
topology generated by the strong (or Whitney-)C’-topology Cz on each factor 
C2(lV’, ll4) (cf. [2], [3]). A typical base-neighbourhood off E C*(lkY, lF8) will be the 
set f + WE, where WE is defined as follows with the aid of a continuous positive 
function s : lF?/ += R, 

Since structural stability seems to be a very natural and basic concept, the next 
main theorem underlines the importance of the constraint qualification of Man- 
gasarian and Fromovitz on the one hand, and the concept of strong stability of 
Kojima on the other hand. 

MAIN THEOREM. The opttmization problem 9( f, H, G) with compact feasible 
set M[H, G] is structurally stable if and only if the following three conditions are 
satis$ed: 

Cl. The Mangasarian-Fromovitz constraint qualification is satisfied at every 
point of M[H, G]. 

C2. Every Kuhn-Tucker point of ?P( f, H, G) is strongly stable in the sense of 
Kojima . 

C3. Different Kuhn-Tucker points have different ( f-)values. 
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We proceed with a clarification of the notions used in the main theorem. Let Df 
(resp. D2f) denote the row-vector of first partial derivatives (resp. the matrix of 
second partial derivatives). 

Futhermore we put 

DEFINITION 1.3. The Lineur Zndependence Construint Quuli$cution (shortly 
LICQ) is said to hold at .X E &Z[ZZ, G] if the vectors Dhi(x), i E Z, Dgj(x), 
j e .ZJx), are linearly independent. The Mungusuriun-Fromovitz Construint Quul- 
ificution (shortly MFCQ) is said to hold at x E M[H, G] if the following two 
conditions are satisfied: 

MF 1. The vectors Dhi(x), i E Z, are linearly independent. 
MF 2. There exists a vector 6 E Rn satisfying: 

Dhj(x)< = 0, 

Dgj(x)tBO, 

A vector ,$ satisfying (1.5) will be called an MF-vector. q 

DEFINITION 1.4. A point 2 E M[H, G] is called a Kuhn-Tucker point if there 
exist real numbers &, pj satisfying the following relations: 

(1.6a) 

pj20, j E Jo(i) . (1.6b) 

The numbers Ai, pj above are called Lugrunge multipliers. IJ 

The set of possible Lagrange multipliers at a Kuhn-Tucker point is compact (in 
fact a compact polyhedron) if and only if MFCQ is satisfied at i (cf. [4]). Of 
course, the latter set is a singleton if LICQ holds. 

For a given problem 9( f, ZZ, G) and a subset % of Rn we put: 

nord(f, H, G), %I = 

For x E RX and p > 0 let B(x, p) C RY denote the open Euclidean ball centered 
at x with radius p, and according to M. Kojima [5] we define: 

DEFINITION 1.5. Let x e M[H, G] be a Kuhn-Tucker point for P( f, H, G). 
Then, x is called strongly stubZe if for some 8 > 0 and each i3 e (0, 81 there exists 
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an a > 0 such that whenever (f, fi, 6) satisfies norm [(f--i 23 - g, G - G), 
B(x, S)] Z a, the ball B(x, S) contains a Kuhn-Tucker point for P( 8 fi, 6) 
which is unique in B(x, 8). 0 

In this paper we shall actually work with another formulation of strong stability 
which is equivalent to the above one under the assumption that MFCQ is valid 
(cf. [5]). For this we need some more definitions. 

Let i E &f[H, G] be a point at which (1.6a) is fulfilled. With respect to a set of 
Lagrange multipliers ,$, i E 1, pj, j l Jo(i), satisfying the relation (1.6a) we 
introduce the Lagrange function LtA ,P1 : 

Let A(2) denote the polyhedron formed by the set of vectors (A, p) : = (. . . , 
‘i>. * . 9 Pj> . .)iE1,jEJ0c21 which satisfy both (1.6a) and (1.6b); here, some fixed 
ordering of the components of (A, p) is assumed. So we have 

A(i) = {(A, p) E ~~~~+lJo~f~l ] (A, p) satisfies (1.6a) and (1.6b)} . (1.9) 

Finally, for x E R? and jC J we put: 

W(x, 7) = {c E lRn 1 Dhj(x)i$ = 0, i E Z, DgJx)t = 0, j E .f} . (1.10) 

LEMMA 1.1. (M. Kojima, [5]). Let i E M[ZZ, G] be u Kuhn-Tucker point for 

ptf, ff, (3. 
(i) Zf LZCQ is satisfied at 2, then 2 is strongly stable if and only if the matrix 

DzLfA,P,(i) has nonvanishing determinants with a common sign on the 
subspaces W(i, .?), for ~117 wifh J+ (2) C y C J,,(i), where 

J+(Z) = { j E Jo(i) 1 pj > 0} . (1.11) 

(ii) Let MFCQ be satisfied at i, but LZCQ not. Then, 2 is strongly stable if and 
only if for every (A, p) E A(2) the matrix DzLLA,P,(Y) is positive definite on 
the subspace W(%, J+(z)), with J+(2) as in (1.11). q 

We call a Kuhn-Tucker point i nondegenerute, if LICQ holds at i together with 
J+(T) = J,,( -) x an with nonsingularity of D2LLA,+,(i) on W(i, J,,(i)). d 

The necessity part of the Main Theorem has been proved in [1] with special 
perturbation techniques and tools from algebraic topology. So, in this paper we 
turn to the sufficiency part. Its proof is divided into three parts which correspond 
to the next three sections. This main body of the proof is contained in Section 4. 

2. Reduction to the Case Z = 0 and qb = Identity 

In this section we first reduce the sufficiency part of the proof of the Main 
Theorem to the case with inequality constraints only. Let the optimization 
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problem 2J’( j?, H, G), with compact feasible set M[H, G], be given and suppose 
that the conditions Cl-C3 as formulated in the Main Theorem, hold. From the 
definition of strong stability together with our constraint qualification MFCQ it 
follows that strongly stable stationary points are isolated and altogether describe a 
closed set. Hence, on the compact set M[H, G] there is a finite number of them, 
say i1,. . . ,J?~. 

Starting with a sufficiently small C$neighbourhood 0 of (f, H, G) we proceed 
as follows. For each (7, g, 6) E 0 we perform a coordinate transformation 
$~,~,~~ in x-space of compact support, shortly 4, such that I$ is of class C1 and, 
moreover, 6 is of class C2 in a neighbourhood of the points il, . . . , fl; the 
coordinate transformation 4 maps the set A4[&] in a neighbourhood of A4[fi, G] 
onto the corresponding set of the unperturbed problem, where iV[fi] = {x E lRn] 
ii(x) = O}. 

Moreover, the coordinate transformations $ are performed in an uniform way 
for all (x fi, 6) E 0’; hence, their construction depends, more or less, only on 
the neighbourhood 0’. 

Note that a (local) C2-coordinate transformation in x-space does not affect the 
characterization of strong stability of stationary points in the sense of Lemma 1.1. 
Having established the above coordinate transformation 4 we may assume that 
g = H, and further coordinate transformations can be performed such that they 
leave the set M[H] in a neighbourhood M[H, G] invariant; in particular, certain 
flows can be taken to be tangential to the zero set of H, which then have a parallel 
extension to a neighbourhood of the latter set. Therefore, after the construction 
of the transformations 4, we may assume that there are no equality constraints 
present, i.e. I= $4. 

The local C2-coordinate transformation. Choose i E {Z1, . . . , J?,}, and 
(A fi, 6) E 0. From the condition MFl in Definition 1.3 it follows that the 
zero-sets M[H] and A![fi] are C*-manifolds in some neighbourhood U of i. In 
fact, put y = c(x), where yi = hi(x), i = 1, . . . , m, yj = [T(x - i), j = m + 1, 

. . . > n, and where tj, j=m+l,.. .,n, form a basis for the orthogonal 
complement of the set {D ‘hi(i), i = 1, . . . , m}. Then, l is a local C2-coordinate 
transformation around ,%, mapping the zero set M[H] to the set {y ] yi = Cl, 
i=l,..., m}. The set A4[ H] in these new coordinates takes the form { y ] yj = 
TiCYm+l> . . . , Ynj7 i = 1,. . . p m}, where ni are C2-functions. Consider the shift- 
mappingy:yjwyi-ni./3i,i=l ,..., m,yjwyj,j=m+l ,..., n,whereeach 
Pi zz @iCYI> . . . 9 yn) is of class C2 having compact support, being equal to one in a 
neighbourhood of the origin, and only depending on the above Ci-neighbour- 
hood Oaf ( f, H, G). This shift-mapping y induces a C’-coordinate transformation 
in the original x-space thereby LocalZy mapping the set iW[fi] onto M[H]. 

The global Cl-coordinate transformation. Now we finish the construction of the 
desired coordinate transformation $~~,~,~~. From the preceding part we may 
assume that the mapping fi vanishes on the set M[H] in some neighbourhood of 
the points %i, . . . , il. Moreover, we may assume that A4[5, G] is contained in a 
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neighbourhood % of A4[H, G], where % only depends on the chosen C$ 
neighbourhood 0 of (f, H, G). By means of the flow of a suitable Cl-vectorfield 
we transform (in a neighbourhood of A4[EZ, G]) the zero set A4[i1, &, . . . , &] 
to the set A4[/z1, &, . . . , i,J. Then, similarly, A4[!r1, &, i3, . . . , h,,J is trans- 
formed into the set Af[&, hz, &, , . . , 
t;ansformed A4[fi] into A4[H] 

6J, and so, after m steps we have 
( around A4[H, G]). In particular, points at which 

H(X) = H(X) remain fixed during the latter transformation; hence, the essence of 
the former local C2-transformation is not disturbed. We only need to indicate the 
first step, i.e. the transformation of A4[&, &, . . . , &,J into the set M[hl, 
h 2,e.e 3 im] within the neighbourhood % of A4[H, G]. To this aim we consider 
the homotopy Z?(X, u) = uhl(x) + (1 - u)~~(x). The above neighbourhood % is 
assumed to be small enough in order that the following constructions can be 
made: 

The vectors D&(X, u), Dhi(x), i = 2, . . . , m, are linearly independent on 
%! x (- E, 1 + E), some E > 0. For x E M[h2, . . . , h,,,] fl %, let T(X) denote the 
orthogonal projection (matrix) of I&!” onto the tangent space { 6 E R” ] Dhj(x)t = 
0, i=2 . . > m} corresponding to the manifold M[h*, . . . , h,J. Next, consider 
the veciorfield .9 on % x (-E, 1 + e): 

Note that the term D#- r. D:& is positive on %! X (-E, 1 + E). From (2.1) 
we see that D$l’ 9 = 0 on ?U, hence fi remains constant on the trajectories of 9? 
So, integrating 9 in time one, the zero set of fi(. , 0) (=il) is mapped to the zero 
set zf H(.,!) (=hl). M oreover, the x-component of the flow of 9, starting at 
ML&> . . . > &I, 
i2,.. 

remains on the latter set. So, in particular, the set M[il, 
. ,-L,,J is mapped (around M[H, G]) in integration time one to the set 

Wh> b . . . , i,,J. (Technically, the vector field 5 should be cut off to zero 
outside a suitable neighbourhood of M[H, G] X [O, 11.) 

Now we explain the reduction to the case $ = identity. The only task of the 
mapping $ is to map the values of the stationary points of the unperturbed 
problem to the corresponding values of the perturbed problem. From strong 
stability it follows that the stationary points, and hence also their corresponding 
objective function values, depend continuously on C$perturbations of the prob- 
lem data. 

From condition C3 we see that the stationary values f(Y1), . . . , f(Y[) are 
pairwise different. So, we only have to perform a shift on R, taking the values 
ml)>. . . , f(Yl) to neighbouring values yl, . . . , y,. Such a shift can be performed 
by means of integrating (in time one) the vectorfield 

where TV is smooth, nonnegative, identically equal to one in a (y-independent) 
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neighbourhood of f(Yi) and identically equal to zero outside a slightly larger 
neighbourhood of f(zi), i = 1, . . . , 1. 

So, from now on we may assume that the critical values of 9’(f, H, G) and the 
perturbed problem 9’( f, Z?, 6) coincide for (f, Z?, 6) in some C$neighbour- 
hood 0 of (f, H, G), and, in addition, that there are no equality constraints 
present, i.e. Z = 0. 

3. Global Construction, Outside the Stationary Points 

In virtue of Section 2 we may omit the equality constraints. Put 

M[ G, F, t] = {x E RY ] gj(x) 2 0, j E .I, t - f(x) 2 0} . (3.1) 

Obviously, we have M[ G, F, l] = =Yf( f, G) (cf. (1.3), omitting H). For fixed t, 
the set M[G, F, t] is a usua1 constraint set with one special inequality constraint, 
namely t - j(x) 2 0. We say that MFCQ is fulfilled at x E Zt4[ G, F, t] if MFCQ is 
fulfilled with respect to the (active) inequality constraints gj, j e J, and the 
additional inequality constraint t - f(. ). In the latter case, an MF-vector is 
defined analogously according to (1 S). The following easy lemma will be crucial 
in this section, where M[G] denotes the set M[H, G] with H omitted. 

LEMMA 3.1. Let i E M[G] be given, and suppose that MFCQ is fulfilled. Then, 
i is a Kuhn-Tucker point for P( f, G) if and only if MFCQ is violated for i 
viewed at as an element of M[G, F, f(T)]. 0 

Let T1,. . . , i1 again denote the stationary points of the unperturbed problem 
9( f, G), equality constraints being omitted. We make the following assumption. 

ASSUMPTION A. There exists an E > 0, such that the closed balls B(ii, e), 
i=l,... , 1, are pairwise disjoint and such that the following holds: 

for all t the sets M[G, F, t] and M[G, F, t] coincide on m\B(ii, ie), 
i=l,...,l. El 

Put B = Uizl B(ii, is). At each point ~~ aM[G, F, t]\B we choose an MF- 
vector & (which then is an MF-vector in a neighbourhood of 2 with respect to 
both 3M[G, F, t] and dM[G, F, t]). By means of a smooth partition of unity we 
obtain a smooth vectorfield t(x) having the property that c(x) is an MF-vector for 
all x E dM[G, F, t]\B resp. x E dM[G, 2, t]\B. Next, consider the normalized 
vectorfield v(x) = e(x) / ]I i$(x)/] an cu 1 smoothy off to zero outside a neighbour- d t .t 
hood of M[G]\B. NOW, for each fixed t we rescale n per integral curve and obtain 
a Lipschitz continuous vectorfield such that in time-one integration the set 
3M[G, F, t]\B is mapped to dM[G, F, t]\B (see also [6]). This gives a Lipschitzian 
homeomorphism +t sending M[G, F, t]\B to M[G, F, t]\B. It is not difficult to see 
that #((x) is jointly Lipschitzian in both t and x. 

Note that +t(x) = x on the set Uizl m\B(ii, se). 
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4. The Local Construction 

The following construction, in which we omit equality constraints again, consists 
of four parts. In each of the first three parts we describe appropriate mappings in 
x-space, due to specific positions (boundary, resp. interior) and characteristics of 
our Kuhn-Tucker points before and after a sufficiently small C$perturbation 
(f, G)+ (z G). Let us call these points (ir=)zi!y, . . , , (il=)zEr, and it, . . . , $, 
resp. As our work will be local, we may restrict to one single undisturbed 
stationary point i = ?’ and one single (corresponding) disturbed stationary point 
-d 

x . 

Recall that the properties of MFCQ and strong stability are fulfilled at fU and at 
id. In order to express the mentioned characteristics in a brief manner we recall 
Kojima’s stationary index at ,i?, denoted by s.index (ZU, (f, G)) (cf. [5]). This 
is the number of negative eigenvalues of D’&,(i*) ] lV(P, J+(Y)) provided 
LICQ holds at ?, and s.index (ZU, (f, G)) to be 0 otherwise. It is known that 
s.index(gd, (x 6)) = s.index(P, (f, G)) (cf. [5]). 

In the fourth part we fit our local constructions into the global construction 
established in Section 3. 

One has to focus the exposition upon the dynamical aspect of homeomorphical 
steering our lower level sets. So, we keep the description of the statical aspect 
(before and after perturbation) short. However, we explain several main features 
of the above steering with a certain representative example, and indicate a typical 
way of locally reducing higher dimensional situations to lower dimensional ones. 

Case 1 (ZocaZ construction). We assume: both Kuhn-Tucker points are lying in the 
interior; i.e., YU E iV[ G]\a&![ G] and id E M[ G]\a&f[ 61. Lemma 1.1 tells us that 
the two stationary points are nondegenerate. 

We may assume id to be inside of a ball B(j?, 8) (8 > O), and B(?, 36) to be 
disjoint from both boundaries dM[G], aiV.![G], and from the 38-balls around the 
other undisturbed Kuhn-Tucker points. As our first step we perform a small 
C--shift in B(%U, 8) taking ? to id. So, we may assume j? = Yd = 0, and f= 0. In 
the second step with the aid of a (locally) linear transformation we may identify 
D’f(O) with A := D*f(O). H ere we remark that the latter transformation depends 
continuously on the data. 

The third step is based on the following linear homotopies: 

FJx, u) = $ux*Ax + (1 - u)f(x) 
i&x, u) := $~x’Ax + (1 - v)&) ((x’ ‘) E ‘m ’ ‘) 

By means of Fq and Fq we define, with some 7 >O and a0 E (0, a), two 
vectorfields on B(O, 24) x (-7, 1 + r): 
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and FF (x, U) in the same way replacing Fq by Fq. These vectorfields are of class 
C1 and we glue them in B(O, 2a0)\@0, aO) with the constant vectorfield (0,l) E 
Rn x R. With an integration in time one and reducing to Rn again, we arrive at 
two Cl-diffeomorphisms, OFq and 8~., taking for an appropriate 8; E (0, &,) the 
level sets of Fq(. , 0) (=f) and Fq( * , 0) (=F) in B(O, 8 A) onto the corresponding 
level sets of Fq( * , 1): x++ $xTAx in 6Fq(B(0, aA)) and 0~~(E3(0, a:)), resp. For 
more details see [7]. Now we conclude 

Let us set 13 := t9jq106$ , % := K’(B(O, 8;)) fl B(O, aA), and V := fI(%). Then 
the Cl-transformation oqmaps the l-level of f in % onto the f-level of f in 7f, 
simultaneously with respect to the parameter l. Moreover, 6 is the identity outside 
B(O, 2&,). The latter transformation again depends continuously on the data. Now 
we may assume that the functions f and 7 coincide in ‘V C B(O, aO). 

In the @H~/z step, given at the end of Section 4, the construction ouside 7f will 
be completed. There, the appearing functions are only assumed to be of class Cl. 

Case 2 (Zocal construction). Now we turn to the case that 2” lies on the 
boundary. 

Case 2(a). We assume 

2 E dM[G] , (4.2) 

s.index(T’, (J G)) 2 1 . (4.3) 

We note that in this case our stationary points z?’ and id must be saddle points 
and that LICQ holds. This Case 2(a) contains two subcases, defined by 

Subcase 2(a)l: ,iYd E M[G]\aM[G] , 

Subcase 2(a)2: id E aM[G] . 

As f and f are Cl-near, in Subcase 2(a)l we have D’f(?‘) = DTf(Yd) = 0. 
Without restrictions we assume Zd to be in the interior of M[G] (shifting 
otherwise). The main local strategy can be described in the following way. We 
transform our unperturbed situation into an interior situation; i.e., keeping the 
inequality constraints fixed we replace Y by a (fictive) implanted inner saddle 
point P near id := fd. But as the situations around ? and id are similar now, we 
are back in Case 1. Note, that the result of such an implantation can be realized 
by means of a small Cm-shift, corresponding with a small perturbation of J 
Moreover, taking arguments as in Case 1 into account, we may assume that f and 
f around Y and id, resp., are quadratic forms, and at last even sums of squares 
(Morse-type normal forms). 

In Subcase 2(a)2, however, we perform two irnpZantations, the first for the 
unperturbed problem: ZU += ?‘, and the second for the perturbed one: id --+ id. 
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But now it might happen that one of the Lagrange multipliers does not vanish. 
So, a nesting of a nucleus (germ) of implantation structure might become more 
complicated than in Subcase Z(a)l. Nevertheless we essentially reduced our task 
to Case 1 again. 

Now, let us be concerned with some operational detaik. Let .10(3’) be the set 
{L *. ., p} (p 5 s). Choose vectors tP+r, . . . , &, E ET? such that { DTgj(?) 
cl.e JCWN~ ‘&+I? . ’ . > CL} is a basis for R’. By means of the C*-transformation 
lo, defined by 

Yl = ~I~~~>~ . . 3 Yp = kzJ4~ Yp+l = t;+& - YUh . . . > Yn = Cb -n 

one locally linearizes M[G] around ~7, to HP x iIT-’ around 0. In Subcase 2(a)2 
we work with a special local linearization & for the perturbed problem, namely 
with J&T’) = {1, . . . , q 1 (q 5 p) (as one many assume) near id (and 3) by 

Yl = ilGl7. . . 7 Y4 = &W Yq+l = &+lm . . . 9 Yp = ipb) > 
yp+l = r$+*(x - fd), . . . , yn = rg(x -id) I . 

We note, that around id the transformed set M[G] becomes a small relative 
neighbourhood in HI4 x RnVq, around the point &&iYd) (perhaps being 0, too) and 
that co and & are C2-near. 

See Figure 4.1 for the most relevant pictures in dimension three with vanishing 
gradient DTf(.?) ({f= f} := {xE RR 1 j(x) = t}). 

transversally 

Fig. 4.1. Strongly stable saddle points (Case 2(a)) with D’f(,Y) = 0 (n = 3): in a pointed neighbour- 
hood of the stationary boundary point .z?’ the level sets off meet aM[G] (locally linearized) without 
any tangential effect (transversality). Different types naturally arise by particular growth behaviours. 
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By := akqc] n {f= tj 
transversally 

Y3 

Fig. 4.2. A strongly stable saddle point (Subcase 2(a)2) with D ‘f(,?‘) # 0 (n = 3): in a pointed 
neighbourhood of the stationary boundary point J? the level sets off meet 8&f[ G] (locally linearized) 
without any tangential effect (transversality). Example (cf. type 2 in Figure 4.1): iJO(.?‘)j = 2, T 
denoting the tangent space of c~M[GJ at F”. 

As some significant realization of Subcase 2(a)2 we look at Figure 4.2. 
Moreover, from the (feasible) level structure near a saddle point 2 with 

D’f(Z) # 0 we can always, in a fictive sense, extrapolate to a strongly stable 
saddle point .? beyond 2 with vanishing gradient of a ~UU&U~~C objective function 
at 2, such that 2 occurs as a saddle point induced by 2. We refer to Figure 4.2 
mereIy to illustrate for the unperturbed problem IV/UZ~ should be the reszdt of 
implantation. One knows the boundary a&I[G] to be an (n - 1)-dimensional 
Lipschitzian manifold (cf. [8]) with MF-vector ,$, say (1, 1, O)T, in Figure 4.2. So, 
we can always interpret Figure 4.2 in higher dimensions. We assume from now on 
that we are in the linearized situation. With 8 > 0 sufficiently small we choose 

2 := -q . . . . , ;, 0, . . . , oy . 

P n-P 
Note that 

z-(0, . . . ,o, zp+l, . . . , zJT 

P n-P 

is a projection to the tangent space T, and the quadratic function 

z+zj+q2 + 
(4.4) 

is a fictive second order “approximation” for f (more precisely for fo <G1) around 
2; here C = (Dli1(0))‘D21+, (i)Dlgl(0). N ow, taking account of geometry and 
a linear transformation (cf. [7]), there is no loss of second order information if we 
replace (4.4) by (4.5): 

Here the numbers of signs @ is just s.index (P, (f, G)), hence 21. Then we 
switch that arbitrarily small neighbourhood of 2 into the interior; i.e., by 
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translation we arrive at 

X Au := a($. ~. , ;, 0,. . . . , oy 

P n-p 
which is the critical point of the quadratic form 

locally around J?. Outside of that neighbourhood we can t-r&e “nest” f” into the 
local level structure off. In a coupZed way (shift off’) we also achieve a fictive 
saddle point id and a nested function fd for our disturbed problem. 

So, we know what we have to implant. 
Our above illustration refers to a small neighbourhood of z?’ and to an 

arbitrarily small neighbourhood of Y (and id) therein. The way of nesting off” 
and fd around .Z’ and id, resp., is nothing else than a (fictive) shift of a stationary 
point into the interior and it will be handled as such in the subsequent example. 
The MF-vector ,$ gives a vertical flow structure for both the unperturbed and the 
perturbed problem defined by the constant vector field [. 

Now, let us turn to the technical aspect of the two implantations; we may 
choose the unperturbed situation ( f, G). For our example in dimension n = 3 we 
restrict on an implantation within the case DTf(iu) = 0. Moreover, ? may be 
interpreted as being shifted into the interior after some perturbation off and it is 
placed on the trajectory of the constant vector field 6 which runs through ?‘. We 
assume as above that the new function f” near ?‘ has the normal form Ey=i & x: 
(up to translation in x-space). As there is still a piecewise linearity of d&f[G] in 
Figure 4.1, type 2, and this creased Lipschitzian manifold can be made almost flat 
(by a linear transformation), we actually proceed for it with construction-ideas 
similar to the ones for type 1. So for our example we prefer i” to be of the (with 
respect to 0 radiaZ type 1 instead of the more conical type 2. Then, however, 
/JO(,?)] = 1 necessarily holds, and we can give an impression how our later 
dimensional reduction might also work. Indeed, a careful reflection justifies the 
following assumption. 

ASSUMPTION. There is a family of hypersurfaces, say even hyperpianes, 
parametrized by the rotation-angle IZY E [O, n), which meet in the axis through the 
origin generated by 6. Moreover they transversally intersect in some small feasible 
neighbourhood of x? all the t-levels off (for t # F near t2 and the critical t?-level: 
namely, in two C2-components (one component) for t < E (t > i, resp.) and, for 
t = f, in two C2-manifolds meeting in 2“. q 

Thus, our radial surface structure is compatible with the vertical flow-box. Now, 
we may IocaZZy reduce our 3-dimensional situation to a family of 2-dimensional 
situations (cf. Figure 4.3). 
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Morse 
structm 

Fig, 4.3. Reduction before perturbation (q, E [O, rr)): f rom the 3-dimensional situation of our 
example we turn to the codim.1 situation given by a specific vertical hyperplane, which conserves the 
sums of squares (Morse) structure around the fictive stationary point .Y. 

- *u 
X 

legs 

%&ndz 
displacement 

t boundary 
displacement 

L boundary 
displacement 

Fig. 4.4. Mapping of area and boundaries in a reduced situation, before perturbation (q e [O, v)): we 
continue Figure 4.3 for our example. Boundary displacement: The plotted mappings imply that parts 
of 8kf[ G] wander inwards to pieces of the fictive level set. For t 5 i there pieces are composed by 
“legs”. 
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So, our full-dimensional control will just integrate a family of well-coupled 
controls with dimension decreased by 1. Each of the latter steerings has to 
perform the mappings depicted in Figure 4.4. In this figure three levels are 
distinguished. In every case the hatched areas have to be mapped onto the 
corresponding hatched areas. 

Although we focus on the hyperplane section corresponding to an arbitrary 
fixed q, E [O, n), the whole local construction will be done simuZtarzeously w.r.t. 
cf. 

In our example two difficulties arise. On the one hand it is possible that for 
some t near f the transversal intersection i?r between the t-level of fU and the 
plane through P, locally being parallel 8J4[G], does not precisely lie above the 
corresponding transversal intersection By of the t-level of fand a&f[G] (geometri- 
cally below). On the other hand, at some x E Br (t < t?) a trajectory of our 
flow-box might be tangent to the t-level of f (the analogous difficulty will arise 
above). However, for each t < ? near F we dynamically perform a horizontal 
C’-shift (positioning) from Br to the projection of the set gr (locally onto 
?lM[G]) and, moreover, for each t 5 c we dynamically realize a (continuous) 
sharpening of the t-level of f and its intersection with the boundary. So we 
received points of intersection, which describe kinks and full-dimensionally form 
our so-called fundamentaz domain (for t). We also need such fundamental 
domains above, for the Morse structure. As it is made clear in Figure 4.4 an 
irzcomparability between the level structure for our unperturbed and our fictive 
inner problem appears. Therefore, we make with respect to each t 5 F, a raising of 
aiV[ G] in our flow-box. In this way we “sucked” area from outside of &![ G]. 

For t > f the raising from L is continuously (in t) reduced to zero. 
Now, having Figure 4.4 in mind we know how to proceed in the new situation 

from Figure 4.5. For each t near L this picture exhibits pairs of comparable 

* , * * : mapping;-: boundary 
displacement 

Fig. 4.5. A radial section (q l [O, r)) and its significant profiles: for our example we transfer the 
mapping (of area and boundaries) from Figure 4.4 into the situations where some positioning and 
sharpening and (in the original unperturbed situation) a raising of dM[ G] are made. Now, especially: 
*-+ *, **-+ **. 
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elements, one due to the unperturbed problem and the other due to the fictive 
problem. Thus, we established situations being similar with the manifold’s 
comparability which underlies the MF-technique from Section 3. Indeed, in a 
small neighbourhood of a pair of corresponding elements from the two fundamen- 
tal domains (for t = ?, especially, of both saddle points) we have in hand 
transversality of our vertical flow with respect to both the “manifold of start” and 
the “manifold of termination”, and finally arrive at our desired steering there, 
namely by a C’-flow followed by a continuous (horizontal) tapered deviation- 
straightening. 

Figure 4.6 gives an insight, how this quite local steering completes to the 
intended local transformation (implantation). 

Let us leave our example with the remark that for examples of type 2 we would 
better do the positioning above, namely in certain projective sense from b; to Br. 
So, our fictive problems are quite appropriate (as the right links between the 
perturbed and the unperturbed problem), because for them we have “place to 
work”. We emphasize this advantage especially for the case of a nonsmooth 
boundary dM[ G], where our local construction actually works, too. Moreover, 
every saddle point ,? with D’&*) # 0 allows an almost similar exposition 
because of similar local geometry relative to type 1 or type 2. 

Now, in order to indicate briefly in Case 2(a) how for an implantation with 
respect to any n > 3 the local reduction to a lower dimensional case happens, we 
work again with ( f, G). W e use an approach which systematically exploits 
radiality (and transversality). For simplicity we assume ]JO(?)] = 1 and that our 
function f restricted to 8A4[G] possesses a normal form around ?. In Subcase 
2(a)2 this germ in KY-r reveals the same stationary index as the extrapolated, then 
switched and implanted, saddle point 2’ of fU in IRE. In the boundary aiV[G] we 
cross one ball of rotation (in the normal form) by means of an intersection with a 
transversal hyperplane (cf. Figure 4.7); i.e., we cross out one @ or one Q from 

Fig. 4.6. Implantation before perturbation; sucked area, loaded by raising (at, e [O, 7r), t< 0: the 
quite local steering (cf. Figure 4.5), consisting of a C’-flow ( **+**) and a residual tapered flow, 
evolves into a local transformation. (Cf. Figure 4.4; we refer to the situations after some positioning, 
sharpening and a raising.) 
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-x~--x~----.-x~-~ +-type1 

t 
Morse normal forms 
(up to translations) 

Fig. 4.7. Crossing (before lifting) in the boundary, before perturbation (Case 2(a)): Example: 
/J,,(3)/ = 1. We “cross” out one @ or one @ be means of a suitable relative hyperplane in aM[G] 
(which then has to be lifted in vertical direction). Degeneracy: a sphere becomes a single point. 

the normal form at each of its levels t near i This can suitably proceed, step by 
step, until we arrive at n - 1 = 2 and together with a further @ at the characteris- 
tic { @ , @ }-distribution, at least of our fictive structure, reduced to dimension 
n = 3. In fact, this crossing has to be lifted from the boundary into the (full) 
space, let us say in direction 6. 

Hence, one is back in a well understood dimension where one now simdtu- 
neo&y works with respect to a family of unperturbed and fictive problems 
parametrized by (q, . . . , cqPs) E [O, T)~-~. So we finished our reduction in a 
t-independent way. 

Now, we proceed with the third part of our proof. We are in Case 2(b) with the 
assumption: 

2’ E M[G] , (4.7) 

s.index(?, (f, G)) = 0 . (4.8) 

In particular, ZU must be a local minimum. Whereas the main lines of construction 
presented for saddle points in Case 2(a) remain the same, in detail we often must 
argue in a more technical way because LICQ is not always guaranteed at ?’ 
(perhaps loss of piecewise smoothness of dM[G]). 

Again for each n E N, n 2 2, we would start with one or two implantations, one 
for the unperturbed and maybe another in the perturbed problem, reducing to 
n = 2. Then we essentially proceed as in Case 1. Now, sz.&cuse 2(b)l and &&use 
2(b)2 naturally arise as subcases as in Case 2(a). Indeed, for implantation we 
&~uy8 nest ball-structures of (lower) levels. Hence, our elaborated steering is 
finally based on a spherical urgumentution; for instance, the appropriate dimen- 
sional reduction sophistically happens sphere -, i.e. t-wise. A stationary point 2 
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Fig. 4.8. A strongly stable point in Case Z(b) with D’f(.?‘) = 0 (n = 3): in a pointed neighbourhood of 
the stationary boundary point Y” the level sets of f and akf[G] meet without any tangential effect 
(transversality; By = {f = t} n aM[ G]). Example (in birds-eye view): variously structurid and highly 
nonsmooth boundary. 

with (4.7), (4.8), and D’f(2) = 0, is called of type 0. This type is totally rudiul 
(like type 1; cf. Figure 4.8). Let us again choose 2’ instead of id. 

Now, we work out an adequate perturbation technique (geometrically b&w) 
for the MF-vector induced flow-box. In fact, we only need to sharpen ubove (i.e. 
for our fictive structure) and we can avoid the positioning of “kinks”. These kinks 
at our Lipschitzian fundamental domains, however, geometrically point away 
from ? and ?‘, resp. But, while for saddle points we mapped j? w ?’ with respect 
to all t 5 f, now 2’ I+ 2’ is assured only for t = i 

Since from a radial point of view we have a dynamical smoothing technique in 
hand, we may state that Figure 4.9 essentially reflects our radial steering. 

At this moment of entrance into the Zmt purt of the proof we can state as a 
resume that we have finished our local constructions around all our Kuhn-Tucker 
points Yj (i = 1,. . . , Q. Moreover in Case Z(a), (b) we could guarantee that 
outside of some very small common neighbourhood of ij and 2:, say B(ii, p) 
(p > O), in our unperturbed and in our perturbed situation the fictive new level 
structure coincides with the one off and f, resp. Namely, we worked in a more set 
theoretical than (due to (f, G)) functional way of transformations, similar to the 
MF-technique from Section 3 (details omitted). IIaving always turned to Case 1, 
we locally proceed with such a t-wise dynamical treatment of (lower) level sets 
outside of an arbitrary small (already treated) neighbourhood of 2:. So, with a 
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(or merely 

W-l) 
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t>i 

near i 

1 raised 

----e- - - - - - -  

T 

Fig. 4.9. A radial section and its significant profile (type 0): The lower hatched area has to be 
transformed onto the upper one. Moreover: *-+*, **+ **. (Cf. Figure 4.3-4.6). 

shrinking of p, if necessary, in the outer subset B(ii, &)\B(Zj, $.s) of a cioscd little 
ball around jZi (E > 0) - in purticulur - we can make A4[ G, F, t] and A4[ G, F, t] for 
all t to coincide, actually by MF-technique being ready to evolve into the 
complement of m. But this just constitutes our Assumption A from Section 
3. 

Now, the local constructions are fitted in the global constructions, and we 
reached our parametrized pair of transformations (c$~, $) due to a sufficiently 
slight perturbation of our optimization problem. 0 
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